
JAVA Sum
变量/数据结构
变量

基本变量

a.八大基本数据类型:
整数类型：byte，short，int，long
浮点数类型：float，double
字符类型：char
布尔类型：boolean

引用变量

1. String

创建指针指向对应的字符串，并且之后的操作都是围绕对这个指针

的改变。每次对字符串的增删都可导致创建新的对象存储，然后让

指针去🈯️。
并且字符串和int等基本数字类型可以转换。
在java中，“”双引号表示String，但是‘’单引号表示char

遇到转译序列，参考如下：

2. StringBuffer

StringBuffer是动态的，可以支持修改但不生成新的对象。

3. Array

类似于python的列表，但是只能是同一种的数据类型并且确定长度
后不能修改。

4. 自己构建的类

对象的数据和方法可以运用点操作符，通过对象的引用变量进行访

问。

数据结构

Container,容器

容器是一个java所编写的程序，管理对象的生命周期和对象之间
的关系

1. ArrayList

StringBuffer sb="";
for (int i=0;i<100;i++){

sb.append(i);
}
String s=sb.toString()

int[] array_ob=new int[100];//the number must be int

Circle objectRefVar = new Circle()

ArrayList<String> sites = new ArrayList<String>();

动态存储objects（区别于array），并且items在里面是遵守顺序
的。

2. Iterator

java中的Iterator是一种接口，它定义了一种方法，允许容器（list，
set等）的用户遍历容器的元素。

迭代方法：

it.hasNext()容器中是否还存在下一个元素
it.next() 输出容器中的下一个元素

3. MAP

包含treemap和hashmap，map类似于python的字典保存键值对。

4. Set

集合

程序逻辑

运算符

逻辑运算符

Iterator<String> it = notes.iterator();

HashMap <String,int> a = new HashMap <String, int>;

Hash<E> a = new Hash<E>();

关系运算

自增运算符

a++,先调用a输出，再进行加1；
++a，进行加1操作后，再输出

IF 语句

While loop

简单loop

While () {. }

int a = 1
a++
++a

if (a) {.
}else if (){
}else { }

do-while loop

Unfold loop

可以通过合并逻辑实现精简的loop，可以叫为这个

For loop

[p1]=the initiation of the for loop
[p2]=the judgement condition
[p3]=the process after a loop

OPP面向对象编程
类

类Class定义同一类型的模版
类的封装思想encapsulation：
对象的值不应该能被直接修改或者访问，而是要通过method来实现

对象（object）

do {
[loop body];
}while(condition);

for (int i=0;i<100;i++){
 [p1]. [p2] [p3]

}

public class Puppy{
public Puppy(){
}

在类中，创建对象和他的构造方法（ constructor）构造方法必须和
类同名。对象是类的实例，创建实例的过程叫做实例化。

一个对象拥有：1. 状态attribute，由数据域radius和当前的值来决定
2. 行为，由调用对象的方法决定
如果对象的数据域没有初始化的时候赋值，那么数据域会是null。

方法（method）
一般方法的构建方式：

形式参数和实参

former parameter ：不是实际的一个值，定义了这个参数的一些特
点

public Puppy(String name){ // 这个构造器仅有一个
参数：name

}
}

puppy dog = new puppy("dog")

char calculate(int num1)

这个的num1就是形式参数

real parameter：实际传入的值
calculate(num)

方法参数的传递

按值传递（passing value）

当传递基本数据类型给方法时，仅仅是传递了一个副本。方法中对

传入的value的改变并不会改变参数原始值。

按对象传递（passing object）

当传递一个对象给方法，传递的是对象的引用，这时如果改变了对

象的状态，那么原始对象的状态也会发生改变。

方法重写Overloading

同名的方法，但是不一样的参数。这是允许的，java编译器也会自
动根据调用方法时候传入的参数，进行判断。

Ambiguous Invocation：

Ambiguous Invocation是指在一个程序中，调用一个函数或
方法时，存在多个同名函数或方法，但参数列表略有不同。

编译器无法自动判断应该调用哪个函数或方法，导致程序中

的歧义性问题。这种情况通常称为“二义性调用”。

抽象类，Abstract class
抽象类只包含了申明的函数，但是不能定义或者生成实例

public abstract class a{

}

抽象类中存在抽象方法，abstarct method：

抽象方法不存在body，因此不能被直接用来调用，必须经过子类
override

抽象类不一定含有抽象方法，但是含有抽象方法的类一定是抽象

类（如果不是接口）。

接口Interface

特征：

1. 所有的方法必须是抽象方法

2. 没有构造器
3. 所有的方法都是public，并且所有的data members都是 public

static final

静态变量+方法

静态变量

如果想让一个类的所有实例共享数据，就要使用静态变量。当对其

中一个实例的这个静态变量进行修改，就会对全体的静态变量进行

修改。

静态方法

public abstract double computePay();

public interface InterfaceName extends
BaseInterfaces;

static int a = 1;

静态方法是指无需创建实例，就可以调用的函数。调用时，类名.方
法名（）。当然对象名.方法名（）也是可以的。

NB. 非静态方法既可以访问静态数据成员又可以访问非静态数据成
员，但是，静态方法只能访问静态数据成员。

常量

类中的常量被所有的对象所共享，因此常量应该申明为final static

关于 final修饰符：当final修饰对象时，对象引用位置不能再改
变，但是可以修改其内部的属性

继承Inheritance
Advantages of inheritance

Avoiding code duplication
Code reuse

Easier maintenance
Extendibility

一般类继承

本质是对某一批类的进一步抽象。只存在单继承，被继承类被称为

父类（superclass），继承类被称为子类（subclass）。子类获得父
类的参数，方法。同时子类拥有自己的内容。

static int num;
static int getNum() {

return num;
}

final static int i = 1;

关键字： extends

子类的构造器和父类的构造器是有区别的；子类必须在构造自己

前，先构造一个父类的构造器。即调用super（）

如果父类中的仅有的构造器是有参数的，子类的构造器必须依照这

个规定，调用super。
如果父类存在不需要参数的构造器，显式写出super（）或者不写都
可以（编译器自动加入）。

继承的修饰符有：private，protected，public，关系大概如下

Abstract Class继承
继承方法和一般类继承一样，但是如果子类是一般类，就必须把父

类中的所有的抽象方法全部重写。

Interface 继承

implements 就是为了让其他的class能够访问这个接口，类似于继
承。

接口也可以继承另一个接口；一个类可以implement多个接口

difference between interface and abstract class

1. 抽象类允许具体方法体；接口必须全是抽象方法

2. 抽象类中的成员变量可以是各种类型的，而接口中的成员变量
只能是 public static final 类型的。

3. 一个类只能继承一个抽象类，而一个类却可以实现多个接口。

class ClassName implements interfaces;

4. 继承了接口的类必须实现接口里面的所有方法；否则该继承的
类必须定义为抽象类

多态

一个子类继承了父类之后，他创造的对象即使属于子类的，也是属

于父类的。

体现为，父类的引用变量可以指向子类对象。

static type

dynamic type

定义时候的类型和实际运行的类型不一样

覆写Overriding

子类父类都定义同一个函数，同样的参数，但是子类可以修改这个

函数，调用的时候，如果对象是子类 就直接调用子类的方法。

如果子类对象想要调用父类的被覆写的方法，可以用super.method()

Upcast

子类对象被用作父类对象

这个其实就是一个比较好的例子，不需要面对子类类型，使用父类

的操作就可以完成任务。variable是父类的变量，但是指向的是实例

superclass variable = new superclass();

superclass variable = new subclass();

superclass variable = new subclass();

化的子类对象。

没有特别的修饰符，直接调用方法将会是子类的方法。

Downcast

可以将父类对象转成子类对象。

必须使用强制转换的形式

健壮性

Error
通常是指java运行环境或者虚拟机中的问题，通过代码通常不能修
复

Exception
exception 是程序在运行过程中出现的问题，可以被开发者捕捉和处
理。

Exception包含两大类：检查型异常和非检查型异常
（checked/unchecked），检查型异常必须显式的处理：

1. throws关键字
2. try-catch板块

Throw

抛出异常，如果代码运行到某种情况下就不能继续执行，这个时候

就可以使用throw抛出异常。

subtype down = (subtype) superclass

public void checkNUm(int num){
if (num<0){

throw new IllegalArgumentException("Number

Throws

Throws用在方法后，声明使用指定的方法可能抛出的异常

Try-catch statement

异常的继承

当子类继承一个有异常处理块的父类时，当覆盖一个函数的时候，

子类不能声明抛出比父类版本更多的异常，并且不能抛出父类的异

常的子类异常。因为子类对象可能被当作父类对象看待。

子类的构造函数中，必须声明父类可能抛出的全部异常，并且可以

加上新的异常

流Stream
File writer

must be positive")
}
}

public void withdraw(double a) throws xxxException

流过滤器

用以读写二进制方式表达的基本数据类型的数据。

文件流

利用reader和writer

Writer

Reader

Format

FileOutputStream out = new FileOutputStream("a.dat")

DataOutputStream out = new DataOutputStream(
new BufferOutputStream(

new
FileOutputStream("a.dat"))
);

%[flags][width][.precision]conversion这里的flag是一些对后
面的操作的事先说明

细节知识点

命名细节（驼峰命名法）：

1. 大小写敏感
2. 类名：首字母大写，驼峰

3. 方法名：首字母小写，驼峰

Java程序运行方法

Java source code --> Byte code file --> 3. JVM（java virtual
machine） --> OS

IPO moel

I : input
P: process
O: output

所有的class都是继承自Object class

分离Business和presentation：business处理IO data，presentation
只负责将结果输出为人类可读的形式

